Automated Feature Extraction and Retrieval of Ultra Sound Kidney Images using Maxi-Min Approach

نویسندگان

  • S. Manikandan
  • V. Rajamani
چکیده

A general purpose medical image retrieval framework has been proposed with two subsystems namely enrollment and the query subsystem. As an attempt to design a new content based image retrieval methodology following the above framework, MAXI-MIN approach is implemented for the ultra sound kidney images for the retrieval process. Around hundred ultrasound kidney images have been collected from the clinical laboratory and fourteen features have been extracted from the existing literature for database creation. The difference between the feature of query image and features of each image in the database has been calculated. The image which is more similar to the query image has been retrieved as the resultant image based on the maximum number of occurrences of features for the minimum difference. If the query image does not match with the stored database image, the query image is added as a new image in the database. The process is highly automated and the system is capable of working effectively across different issues without human interference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mathematical Approach for Feature Selection & Image Retrieval of Ultra Sound Kidney Image Databases

This paper aims to focus on the feature extraction, selection and database creation of ultra sound kidney images for image retrieval which will aid for computer assisted diagnosis. The impact of content-based access to medical images is frequently reported but existing systems are designed for only a particular context of diagnosis. But, our concept of image retrieval in medical applications ai...

متن کامل

Ultra Sound Kidney Image Retrieval using Time Efficient One Dimensional GLCM Texture Feature

Ultrasound applications are used for diagnostic applications such as visualizing muscles, tendons, internal organs, to determine its size, structures, any lesions or other abnormalities. This paper concentrates the diagnosis of abnormalities in kidney Images based on retrieving past similar images from kidney Image Database. More and more amount of ultrasound digital images are being captured a...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

روشی برای بازخورد ربط براساس بهبود تابع شباهت در بازیابی تصویر بر اساس محتوا

In content based image retrieval systems, the suitable visual features are extracted from images and stored in the feature database Then the feature database are searched to find the most similar images to the query image. In this paper, three types of visual features by 270 components were used for image indexing. Here, we use a weighted distance for similarity measurement between two images....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010